Code:
import
java.io.*;
import
java.util.*;
class
Optimal
{
public int p[];
public int q[];
public int a[];
public int w[][];
public int c[][];
public int r[][];
public int n;
int front,rear,queue[];
public Optimal(int SIZE)
{
p=new int[SIZE];
q= new int[SIZE];
a=new int[SIZE];
w=new int[SIZE][SIZE];
c=new int[SIZE][SIZE];
r=new int[SIZE][SIZE];
queue=new int[SIZE];
front=rear=-1;
}
/*
This function returns a value in the range r[i][j-1] to r[i+1][j] SO that the
cost c[i][k-1] + c[k][j] is minimum */
public
int Min_Value(int i, int j)
{
int m,k=0;
int minimum = 32000;
for (m=r[i][j-1] ; m<=r[i+1][j] ; m++)
{
if ((c[i][m-1]+c[m][j]) < minimum)
{
minimum = c[i][m-1] + c[m][j];
k = m;
}
}
return k;
}
/* This function builds the table from all the
given probabilities It basically computes C,r,W values */
public
void OBST()
{
int i, j, k, l, m;
for (i=0 ; i<n ; i++)
{
//
Initialize
w[i][i] = q[i];
r[i][i] = c[i][i] = 0;
//
Optimal trees with one node
w[i][i+1] = q[i] + q[i+1] + p[i+1];
r[i][i+1] = i+1;
c[i][i+1] = q[i] + q[i+1] + p[i+1];
}
w[n][n] = q[n];
r[n][n] = c[n][n] = 0;
// Find
optimal trees with m nodes
for (m=2 ; m<=n ; m++)
{
for (i=0 ; i<=n-m ; i++)
{
j = i+m;
w[i][j] = w[i][j-1] + p[j] + q[j];
k = Min_Value(i,j);
c[i][j] = w[i][j] + c[i][k-1] + c[k][j];
r[i][j] = k;
}
}
}
/*This
function builds the tree from the tables made by the OBST function */
public
void build_tree()
{
int i, j, k;
System.out.print("The Optimal Binary
Search Tree For The Given Nodes Is ....\n");
System.out.print("\n The Root of this
OBST is :: "+r[0][n]);
System.out.print("\n The Cost Of this
OBST is :: "+c[0][n]);
System.out.print("\n\n\tNODE\tLEFT
CHILD\tRIGHT CHILD");
System.out.println("\n
-------------------------------------------------------");
queue[++rear] = 0;
queue[++rear] = n;
while(front != rear)
{
i = queue[++front];
j = queue[++front];
k = r[i][j];
System.out.print("\n "+k);
if (r[i][k-1] != 0)
{
System.out.print(" "+r[i][k-1]);
queue[++rear] = i;
queue[++rear] = k-1;
}
else
System.out.print(" -");
if(r[k][j] != 0)
{
System.out.print(" "+r[k][j]);
queue[++rear] = k;
queue[++rear] = j;
}
else
System.out.print(" -");
}
System.out.println("\n");
}
}
/*
This is the main function */
class
OBSTDemo
{
public static void main (String[] args )throws
IOException,NullPointerException
{
Optimal obj=new Optimal(10);
int i;
System.out.print("\n Optimal Binary
Search Tree \n");
System.out.print("\n Enter the number of
nodes ");
obj.n=getInt();
System.out.print("\n Enter the data
as ....\n");
for (i=1;i<=obj.n;i++)
{
System.out.print("\n
a["+i+"]");
obj.a[i]=getInt();
}
for (i=1 ; i<=obj.n ; i++)
{
System.out.println("p["+i+"]");
obj.p[i]=getInt();
}
for (i=0 ; i<=obj.n ; i++)
{
System.out.print("q["+i+"]");
obj.q[i]=getInt();
}
obj.OBST();
obj.build_tree();
}
public
static String getString() throws IOException
{
InputStreamReader input = new InputStreamReader(System.in);
BufferedReader b = new
BufferedReader(input);
String str = b.readLine();//reading the
string from console
return str;
}
public
static char getChar() throws IOException
{
String str = getString();
return str.charAt(0);//reading first char
of console string
}
public
static int getInt() throws IOException
{
String str = getString();
return Integer.parseInt(str);//converting
console string to numeric value
}
}
OUTPUT:
Optimal Binary Search Tree
Enter the number of nodes 4
Enter the data as
....
a[1] 1
a[2] 2
a[3] 3
a[4] 4
p[1] 3
p[2] 3
p[3] 1
p[4] 1
q[0] 2
q[1] 3
q[2] 1
q[3] 1
q[4] 1
The Optimal Binary Search Tree For The Given Nodes
Is ....
The Root of
this OBST is :: 2
The Cost Of
this OBST is :: 32
NODE LEFT CHILD RIGHT CHILD
-------------------------------------------------------
2 1 3
1 - -
3 - 4
4 - -
No comments:
Post a Comment