Tuesday, 14 May 2013

13. OPTIMAL BINARY SEARCH TREE (OBST)


Code:
import java.io.*;
import java.util.*;
class Optimal
{
 public int p[];      
 public int q[];      
 public int a[];    
 public int w[][];
 public int c[][];
 public int r[][];
 public int n;            
 int front,rear,queue[];
 public Optimal(int SIZE)
 {
  p=new int[SIZE];
  q= new int[SIZE];
  a=new int[SIZE];
  w=new int[SIZE][SIZE];
  c=new int[SIZE][SIZE];
  r=new int[SIZE][SIZE];
  queue=new int[SIZE];
  front=rear=-1;
}

/* This function returns a value in the range r[i][j-1] to r[i+1][j] SO that the cost c[i][k-1] + c[k][j] is minimum  */


public int Min_Value(int i, int j)
{
  int m,k=0;
  int minimum = 32000;
  for (m=r[i][j-1] ; m<=r[i+1][j] ; m++)
  {
  if ((c[i][m-1]+c[m][j]) < minimum)
  {
  minimum = c[i][m-1] + c[m][j];
  k = m;
  }
 }
 return k;
}


/*  This function builds the table from all the given probabilities It basically computes C,r,W values */


public void OBST()
{
 int i, j, k, l, m;
 for (i=0 ; i<n ; i++)
 {
 //  Initialize
 w[i][i] = q[i];
 r[i][i] = c[i][i] = 0;
 //  Optimal trees with one node
 w[i][i+1] = q[i] + q[i+1] + p[i+1];
 r[i][i+1] = i+1;
 c[i][i+1] = q[i] + q[i+1] + p[i+1];
 }
 w[n][n] = q[n];
 r[n][n] = c[n][n] = 0;
 //  Find optimal trees with m nodes
  for (m=2 ; m<=n ; m++)
  {
  for (i=0 ; i<=n-m ; i++)
  {
   j = i+m;
   w[i][j] = w[i][j-1] + p[j] + q[j];
   k = Min_Value(i,j);
   c[i][j] = w[i][j] + c[i][k-1] + c[k][j];
   r[i][j] = k;
  }
  }
}


/*This function builds the tree from the tables made by the OBST function */


public void build_tree()
{
  int i, j, k;
  System.out.print("The Optimal Binary Search Tree For The Given Nodes Is ....\n");
  System.out.print("\n The Root of this OBST is :: "+r[0][n]);
  System.out.print("\n The Cost Of this OBST is :: "+c[0][n]);
  System.out.print("\n\n\tNODE\tLEFT CHILD\tRIGHT CHILD");
  System.out.println("\n -------------------------------------------------------");
  queue[++rear] = 0;
  queue[++rear] = n;
  while(front != rear)
  {
  i = queue[++front];
  j = queue[++front];
  k = r[i][j];
  System.out.print("\n         "+k);
  if (r[i][k-1] != 0)
  {
   System.out.print("              "+r[i][k-1]);
   queue[++rear] = i;
   queue[++rear] = k-1;
  }
   else
    System.out.print("              -");
   if(r[k][j] != 0)
   {
    System.out.print("              "+r[k][j]);
    queue[++rear] = k;
    queue[++rear] = j;
   }
   else
    System.out.print("              -");
   }
   System.out.println("\n");
}
}
/* This is the main function */
class OBSTDemo
{
 public static void main (String[] args )throws IOException,NullPointerException
{
   Optimal obj=new Optimal(10);
  int i;
  System.out.print("\n Optimal Binary Search Tree \n");
  System.out.print("\n Enter the number of nodes   ");
  obj.n=getInt();
 System.out.print("\n Enter the data as  ....\n");
  for (i=1;i<=obj.n;i++)
 {
  System.out.print("\n a["+i+"]");
  obj.a[i]=getInt();
 }
 for (i=1 ; i<=obj.n ; i++)
 {
  System.out.println("p["+i+"]");
  obj.p[i]=getInt();
  }
  for (i=0 ; i<=obj.n ; i++)
  {
   System.out.print("q["+i+"]");
   obj.q[i]=getInt();
  }
   obj.OBST();
   obj.build_tree();
}


public static String getString() throws IOException
 {
      InputStreamReader input = new InputStreamReader(System.in);
      BufferedReader b = new BufferedReader(input);
      String str = b.readLine();//reading the string from console
      return str;
 }


public static char getChar() throws IOException
 {
    String str = getString();
    return str.charAt(0);//reading first char of console string
 }
public static int getInt() throws IOException
 {
     String str = getString();
     return Integer.parseInt(str);//converting console string to numeric value
 }

OUTPUT:
Optimal Binary Search Tree
Enter the number of nodes   4
Enter the data as  ....


a[1] 1
a[2] 2
a[3] 3
a[4] 4


p[1] 3
p[2] 3
p[3] 1
p[4] 1


q[0] 2
q[1] 3
q[2] 1
q[3] 1
q[4] 1


The Optimal Binary Search Tree For The Given Nodes Is ....

 The Root of this OBST is :: 2
 The Cost Of this OBST is :: 32


        NODE    LEFT CHILD      RIGHT CHILD
 -------------------------------------------------------


         2              1              3
         1              -              -
         3              -              4
         4              -              -

No comments:

Post a Comment